
PRINCIPLES OF ANALYSIS
LECTURE 21 - PROPERTIES OF THE DERIVATIVE

PAUL L. BAILEY

1. Leibnitz Notation

Let f : D → R with x0 an accumulation point of D.
Let ∆x = x − x0; viewing x0 as fixed, this is implicitly a function of x. Let

∆f = f(x)− f(x0); viewing f as fixed, this is also a function of x.
Now x goes to x0, we see that ∆x goes to 0. Thus

lim
x→0

∆f

∆x
= lim

x→x0

f(x)− f(x0)
x− x0

.

Thus we may define the derivative to be
df

dx
= lim

x→0

∆f

∆x
.

Moreover, in Leibnitz notation, it is traditional to start with a function whose
name is y instead of f , so this becomes

dy

dx
= lim

x→0

∆y

∆x
.
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2. Chain Rule

If we have two lines y = m1z + b1 and z = m2x + b2 and compose them, we
obtain

y = m1m2x + (m1b2 + b1),
a line with slope m1m2. Since we view a differentiable function as a function
which is approximately a line whose slope is the derivative, we guess that the
derivative of a composition is the product of the derivatives.

Suppose that y is a function of u and u is a function of x. Then we may
attempt to right

∆y

∆x
=

∆y

∆u

∆u

∆x
.

Then ∆u → 0 as ∆x → 0, so taking the limit of both sides we would arrive at
dy

dx
=

dy

du

du

dx
.

The problem with this reasoning is that ∆u may be zero even when ∆x is
nonzero. We have to get around this problem.

Proposition 1 (Chain Rule). Let X, Y ⊂ R with x0 ∈ D an accumulation point
of X and y0 ∈ Y and accumulation point of Y . Let f : X → R and g : Y → R
with f(X) ⊂ Y and f(x0) = y0. If f is differentiable at x0 and g is differentiable
at y0, then g ◦ f is differentiable at x0 and

(g ◦ f)′(x0) = g′(y0)f ′(x0).

Proof. Define a function U : X → R by U(x) = g(f(x))−g(f(x0))
x−x0

; we wish to show
that U(x) has a limit at x = x0, and that limx→x0 U(x) = g′(y0)f ′(x0).

Define h : Y → R by

h(y) =

{
g(y)−g(y0)

y−y0
if y 6= y0;

g′(y0) if y = y0.

Since g is differentiable at y0, we have limy→y0 h(y) = g′(y0) = h(y0), so h is
continuous at y0. Since f is differentiable at x0, it is continuous at x0, and since
f(x0) = y0, then h ◦ f is continuous at x0.

Set T (x) = f(x)−f(x0)
x−x0

. We claim that for x ∈ D r {x0}, we have U(x) =
h(f(x)) · T (x). If f(x) = f(x0), then g(f(x)) = g(f(x0)) = g(y0). In this case,
U(x) = 0 and h(f(x)) ·T (x) = 0. Otherwise, U(x) = g(f(x))−g(f(x0))

f(x)−f(x0)
f(x)−f(x0)

x−x0
=

h(f(x)) · T (x).
Now take the limit to see that

lim
x→x0

U(x) = lim
x→x0

h(f(x)) lim
x→x0

T (x) = g′(y0)f ′(x0).
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3. Extrema

Let f : D → R and let x0 ∈ D.
We call x0 a global maximum [respectively global minimum] of f if f(x) ≤

f(x0) [respectively f(x) ≥ f(x0)] for all x ∈ [a, b]. If x0 is a global minimum or
a global maximum, it is called a global extremum.

Proposition 2. Let D ⊂ R and let f : D → R be continuous. If D is compact,
then there exist x1, x2 ∈ D such that x1 is a global minimum of f and x2 is a
global maximum of f .

Proof. Since D is compact and f is continuous, then f(D) is compact. Thus
inf f(D) ∈ f(D) and sup f(D) ∈ f(D). So there exist x1, x2 ∈ D such that
f(x1) = inf f(D) and f(x2) = sup f(D). Then x1 is a global minimum and x2

is a global maximum. �

We call x0 a local maximum [respectively local minimum] of f if there exists a
neighborhood Q of x0 such that for x ∈ Q∩D we have f(x) ≤ f(x0) [respectively
f(x) ≥ f(x0)]. If x0 is a local minimum or a local maximum, it is called a local
extremum.

Proposition 3. Let f : [a, b] → R and let x0 ∈ [a, b] be a local extremum of f .
If f is differentiable at x0, then f ′(x0) = 0.

Proof. Suppose that x0 is a local maximum. Then there exists δ > 0 such that
f(x) ≤ f(x0) for all x satisfying |x− x0| < δ.

Set T (x) = f(x)−f(x0)
x−x0

for x ∈ D r {x0}. Since f is differentiable at x0,
limn→∞ T (xn) = f ′(x0) for every sequence from (x − δ, x + δ) which converges
to x0.

Note that the numerator of T (x) is negative for x near x0. For xn = x− δ
n , we

see that T (xn) ≥ 0, so f ′(x0) ≥ 0. However, for xn = x+ δ
n , we have T (xn) ≤ 0,

so f ′(x0) ≤ 0. This shows that f ′(x0) = 0. �
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4. Rolle’s Theorem

Proposition 4 (Rolle’s Theorem). Let f : [a, b] → R be continuous on [a, b]
and differentiable on (a, b). Then if f(a) = f(b), there exists c ∈ (a, b) such that
f ′(c) = 0.

Proof. Since [a, b] is compact, there exists x1, x2 ∈ [a, b] such that f(x1) is a
global minimum and f(x2) is a global maximum. If f(x1) = f(x2), then f is
constant, and f ′(x) = 0 for every x ∈ [a, b]. Otherwise, either x1 6= f(a) or
x2 6= f(a). Therefore either x1 ∈ (a, b) or x2 ∈ (a, b). If x1 ∈ (a, b), then x1 is a
local minimum, and f ′(x1) = 0. If x2 ∈ (a, b), then x2 is a local maximum, and
f ′(x2) = 0. �

Proposition 5 (Mean Value Theorem). Let f : [a, b] → R be continuous on
[a, b] and differentiable on (a, b). Then there exists c ∈ (a, b) such that f ′(c) =
f(b)−f(b)

b−a .

Proof. Define g : [a, b] → R by g(x) = f(x) − x−a
b−a (f(b) − f(a)). There g is

continuous on [a, b] and differentiable on (a, b), and we compute that

g′(x) = f ′(x)− f(b)− f(a)
b− a

.

However, g(a) = f(a) and g(b) = f(a). By Rolle’s Theorem, there exists
c ∈ [a, b] such that g′(c) = 0, so f ′(c) = f(b)−f(a)

b−a . �
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5. Inverse Function Theorem

Proposition 6. Let f : [a, b] → R be continuous on [a, b] and differentiable on
(a, b). If f ′(x) 6= 0 for x ∈ [a, b], then f is injective, and the inverse of f is
differentiable on f((a, b)), with

(f−1)′(f(x)) =
1

f ′(x)
for every x ∈ (a, b).

Proof. Suppose that f is not injective. Then there exist x1, x2 ∈ [a, b] such that
f(x1) = f(x2). By Rolle’s Theorem, there exists c ∈ [x1, x2] such that f ′(c) = 0;
this violates the hypothesis. Thus f is injective.

We have seen that a continuous bijective function on a compact set has a
continuous inverse; since [a, b] is compact, f−1 : f([a, b]) → [a, b] is continuous.

Now let y0 ∈ f((a, b)), and let {yn}∞n=1 be an arbitary sequence from
f((a, b)) r {y0} which converges to y0. Set x0 = f−1(y0) and xn = f−1(yn).
It suffices to show that limn→∞

f−1(yn)−f−1(y0)
yn−y0

= 1
f ′(x0)

.
Since f−1 is continuous, we see that limn→∞ f−1(yn) = f−1(y0), that is,

limn→∞ xn = x0. Thus, since f is differentiable at x0, we have

lim
n→∞

f(xn)− f(x0)
xn − x0

= f ′(x0).

Since f is injective, f(xn)− f(x0) 6= 0 unless xn = x0, so by a property of limits
of sequences we have

1
f ′(x0)

= lim
n→∞

xn − x0

f(xn)− f(x0)
= lim

n→∞

f−1(yn)− f−1(y0)
yn − y0

.
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