PRINCIPLES OF ANALYSIS
LECTURE 21 - PROPERTIES OF THE DERIVATIVE

PAUL L. BAILEY

1. LEIBNITZ NOTATION

Let f: D — R with zy an accumulation point of D.
Let Az = x — x¢; viewing xg as fixed, this is implicitly a function of x. Let
Af = f(x) — f(xo); viewing f as fixed, this is also a function of z.
Now x goes to xg, we see that Az goes to 0. Thus
@)~ fwo)
z—0 AT T—T0 xr — o
Thus we may define the derivative to be
ﬁ = lim ﬂ
drz -0 Az’
Moreover, in Leibnitz notation, it is traditional to start with a function whose
name is y instead of f, so this becomes
@ = lim %
dz -0 Az’
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2. CHAIN RULE

If we have two lines y = m1z + by and z = maox + by and compose them, we

obtain
y = mimax + (m1ba + by),

a line with slope mims. Since we view a differentiable function as a function
which is approximately a line whose slope is the derivative, we guess that the
derivative of a composition is the product of the derivatives.

Suppose that y is a function of u and u is a function of z. Then we may
attempt to right

Ay Ay Au
Az AulAz’
Then Au — 0 as Ax — 0, so taking the limit of both sides we would arrive at
dy dydu
dr — dudz’

The problem with this reasoning is that Au may be zero even when Ax is
nonzero. We have to get around this problem.

Proposition 1 (Chain Rule). Let X, Y C R with zo € D an accumulation point
of X and yg € Y and accumulation point of Y. Let f: X - Randg:Y — R
with f(X) CY and f(xo) = yo. If [ is differentiable at xy and g is differentiable
at yo, then go f is differentiable at x¢ and

(90 f)(z0) = ¢'(y0) f' (o)
Proof. Define a function U : X — R by U(z) = 2/ @D=9U @) we wish to show

T—XT0

that U(z) has a limit at © = z, and that lim,_.,, U(z) = ¢'(yo) f'(z0)-
Define h: Y — R by

9(¥)—39(yo) : .
- [ ivem

9'(vo) if y = yo.
Since g is differentiable at yo, we have limy_.,, h(y) = ¢'(yo) = h(yo), so h is
continuous at yg. Since f is differentiable at xg, it is continuous at xg, and since
f(zo) = yo, then ho f is continuous at z.

Set T'(z) = %ﬁgt‘ﬁ We claim that for x € D \ {z¢}, we have U(x) =
h(f(x)) - T(x). If f(z) = f(zo), then g(f(x)) = g(f(20)) = g(yo). In this case,
U(x) = 0 and h(f(2))-T(x) = 0. Otherwise, U(z) = SN0l (o)) fx)—f(zo) _
h(f(z)) - T(x).

Now take the limit to see that

lim U(z) = lim h(f(2)) lim T(z) = g'(4o) ' (x0).

T—xg T—xg Tx—T0




3. EXTREMA

Let f: D — R and let zg € D.

We call 2y a global mazimum [respectively global minimum] of f if f(x) <
f(zo) [respectively f(x) > f(xo)] for all z € [a,b]. If 2 is a global minimum or
a global maximum, it is called a global extremum.

Proposition 2. Let D C R and let f: D — R be continuous. If D is compact,
then there exist x1,x2 € D such that x1 is a global minimum of f and x2 is a
global mazimum of f.

Proof. Since D is compact and f is continuous, then f(D) is compact. Thus
inf f(D) € f(D) and sup f(D) € f(D). So there exist x1,29 € D such that
f(z1) = inf f(D) and f(z2) = sup f(D). Then z; is a global minimum and x4
is a global maximum. O

We call zq a local mazimum [respectively local minimum] of f if there exists a
neighborhood @ of x( such that for z € QND we have f(z) < f(zo) [respectively
f(z) > f(zo)]. If zg is a local minimum or a local maximum, it is called a local
extremum.

Proposition 3. Let f : [a,b] — R and let zo € [a,b] be a local extremum of f.
If f is differentiable at xq, then f'(xq) = 0.

Proof. Suppose that z( is a local maximum. Then there exists § > 0 such that
f(@) < f(zo) for all x satisfying |x — x| < 4.

Set T'(z) = %ﬁxo) for ¢ € D ~ {zp}. Since f is differentiable at x,
lim,, oo T(x,) = f'(x) for every sequence from (x — §,x + &) which converges
to xg.

Note that the numerator of T'(z) is negative for x near xy. For x,, = x — %, we
see that T'(z,,) > 0, so f'(zo) > 0. However, for z,, = 2+ 2, we have T'(z,) < 0,
so f'(zo) < 0. This shows that f'(z¢) = 0. O



4. ROLLE’S THEOREM

Proposition 4 (Rolle’s Theorem). Let f : [a,b] — R be continuous on [a,b)
and differentiable on (a,b). Then if f(a) = f(b), there exists ¢ € (a,b) such that

f'(c)=0.

Proof. Since [a,b] is compact, there exists x1,z2 € [a,b] such that f(x1) is a
global minimum and f(z3) is a global maximum. If f(xz1) = f(z2), then f is
constant, and f'(z) = 0 for every = € [a,b]. Otherwise, either z; # f(a) or
x9 # f(a). Therefore either x1 € (a,b) or x3 € (a,b). If 21 € (a,b), then z; is a
local minimum, and f’(x;) = 0. If 22 € (a,b), then x5 is a local maximum, and

F(a2) = 0. O

Proposition 5 (Mean Value Theorem). Let f : [a,b] — R be continuous on
[a,b] and differentiable on (a,b). Then there exists ¢ € (a,b) such that f'(c) =
f)—f(b)

b—a -

Proof. Define g : [a,b] — R by g(z) = f(z) — {=2(f(b) — f(a)). There g is
continuous on [a, b] and differentiable on (a,b), and we compute that
f(0) — f(a)
/ el
g(w) = ') - D=,
However, g(a) = f(a) and g(b) = f(a). By Rolle’s Theorem, there exists
¢ € [a,b] such that ¢'(c) = 0, so f'(c) = L l), i) O

a



5. INVERSE FUNCTION THEOREM

Proposition 6. Let f : [a,b] — R be continuous on [a,b] and differentiable on
(a,b). If f'(x) # 0 for x € [a,b], then f is injective, and the inverse of f is
differentiable on f((a,b)), with

for every x € (a,b).

Proof. Suppose that f is not injective. Then there exist a1, x5 € [a, b] such that
f(z1) = f(z2). By Rolle’s Theorem, there exists ¢ € [x1, x2] such that f/(c) = 0;
this violates the hypothesis. Thus f is injective.
We have seen that a continuous bijective function on a compact set has a
continuous inverse; since [a, b] is compact, f~! : f([a,b]) — [a,b] is continuous.
Now let yo € f((a,b)), and let {y,}>2,; be an arbitary sequence from
f((a,b)) ~ {yo} which converges to yo. Set xo = f~1(yo) and =, = f~(yn).

: ST )= o) 1
It suffices to show that lim,,_ o T=— = Py
Since f~! is continuous, we see that lim, ..o f~1(yn) = f '(y0), that is,

limy,_ o0 Ty = xg. Thus, since f is differentiable at xg, we have

n—oo Iy — To
Since f is injective, f(x,)— f(xo) # 0 unless x,, = xq, so by a property of limits
of sequences we have

S ) = (o)

= 1i — =1 .
Fl@o)  n—oo f(zn) — f(o)  nooe Yo — 10
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